
Extended Abstract

Background and Our Project Goal: Large language models (LLMs) have demonstrated impres-
sive reasoning capabilities after augmented by reinforcement learning methods like DeepSeek-R1
Guo and et al. (2025). However, they remain fundamentally closed-world systems, trained on static
corpora and prone to hallucinations in LLM responses when tasks require external knowledge such
as enterprise internal documents or real time information from Internet. Retrieval-Augmented Gener-
ation (RAG)Lewis et al. (2021) mitigates such limitations at inference time by first retrieving relevant
passages from documents/Internet and then feeding them to LLM for generating outputs. Our project
is interested in enhancing LLM reasoning over external knowledge through explicitly integrating
reinforcement learning with search/retrieval interactions during both model training and inference.

Our Method: The recent work Search-R1 Jin et al. (2025b) has the first attempt to integrate
reinforcement learning with search engine, and uses a simple outcome-based reward based on the
exact matching between predicted and ground truth answers. Our method improves the Search-R1
reinforcement learning framework by leveraging an LLM-as-a-judge to evaluate the relevance of
search query during training, a.k.a. RLAIF (Reinforcement Learning from AI Feedback).

In our RLAIF, we utilize a separate LLM to compute search-question relevance score rRel, based
on the relevance between question and the search query from model thinking process. This score
reflects semantic alignment and factual support of the search query to the question.

We design a new reward function by combining both exact matching reward and search-question
relevance reward R = max

(
EM, α · rRel

)
, where EM ∈ {0, 1} indicates answer Exact Matching

and α is a scaling factor that balances these two reward functions.

Setting: We follow the experiment setting in Search-R1 code base Jin et al. (2025a). The Wikipedia-
18 corpus is indexed using the E5 retriever (with passages stored in a JSONL file and an ANN index
built) and served locally via a retrieval server. GRPO algorithm is used for both reproducing Search-
R1 method and our new method. We use the same hyperparameters as in the Search-R1 code base
and conduct each experiment on Qwen2.5-3B LLM base model using 2 A100 80GB GPUs. We
evaluate our method on two datasets: Natural Questions (NQ) dataset Kwiatkowski et al. (2019) and
HotpotQA dataset Yang et al. (2018). We utilize two evaluation metrics: Exact Matching Accuracy
(EMA) and Semantic Matching Accuracy (SMA) across varying similarity thresholds.

Results: The results show that our RLAIF method substantially outperforms all prior baselines on
both Exact Match QA accuracy and semantic matching metrics. On Natural Questions, it achieves
44.3% EM—3.7% (9% relative) above the strongest Search-R1 baseline—and on HotpotQA it
reaches 30.9%, a 2.5% (8.8% relative) improvement. In semantic matching (Figure 4), RLAIF
consistently yields about 4% higher accuracy across similarity thresholds on NQ and 1–2% higher
on HotpotQA, demonstrating more robust answer quality even as the cosine-similarity requirement
tightens. Qualitatively, RLAIF typically requires only a single retrieval step to gather the necessary
evidence, leading to more efficient reasoning pipelines. The failures are oftentimes traced back to
incorrect or misleading retrieval results that cascade into wrong answers.

During training, RLAIF steadily increases both its EM reward and its relevance-score reward, while
Search-R1 oscillates and plateaus lower. In RLAIF training, the policy gradient loss decays to near
zero and the KL divergence grows moderately, indicating stable convergence with controlled deviation
from the reference policy. Finally, RLAIF’s valid-search rate and end-to-end QA completion both
climb rapidly where they remain high while Search-R1 collapses after certain training steps.

Discussions: We observe that smaller models such as Qwen2.5-0.5B fails to achieve promising
results for both Search-R1 and our RLAIF method. Moreover, extending training duration beyond
a certain point produces diminishing returns, underscoring the need for a careful balance between
training time and performance gains.

Conclusions and Future Work: Our RLAIF shows that integrating an LLM-based evaluator into
RL training improves model accuracy while ensuring training stability. Future work will explore
scaling to larger LLM models and other reasoning tasks in addition to question answering.
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Abstract

Large language models (LLMs) have demonstrated impressive reasoning capa-
bilities, particularly when enhanced with reinforcement learning techniques like
DeepSeek-R1. However, existing methods remain limited by their closed-world
nature, lacking mechanisms to incorporate external, real-time knowledge during
inference or training, causing hallucinations in LLM outputs. In this paper we are
interested in enhancing LLM reasoning capabilities over external knowledge. We
propose a novel reinforcement learning framework that works with search engine
to integrate retrieved knowledge into the training process and adopts an LLM-As-a-
Judge to provide feedback (RLAIF). Our RLAIF introduces a new reward function
that also considers the relevance of the retrieved passages from external documents
in addition to the final output matching, which was used in recent Search-R1 Guo
and et al. (2025) work for its reward function. Our experiments demonstrate the
effectiveness and scalability of our RLAIF in improving LLM reasoning capabil-
ity while maintaining superior training stability. When evaluated on the Natural
Questions and HotpotQA QA benchmarks, our method significantly outperforms
all baselines, with improvements of up to 3.7% in exact match accuracy over the
current best Search-R1 method when both trained on the Qwen2.5-3B model.

1 Introduction

Large language models (LLMs) is one of the most significant breakthroughs in human history, and
many put it equivalent to industrial revolution. It started with demonstrating remarkable capabilities
in natural language understanding and generation and then expanded into visual generations and
multimodal LLMs. Recently, we have also witnessed another great advancement in the reasoning
capabilities of LLMs. In particular, models such as OpenAI-o1 Jaech and et al (2024) and DeepSeek-
R1 Guo and et al. (2025) have used RL techniques Kaelbling et al. (1996)Sutton et al. (1999) to
improve logical reasoning and problem solving skills by interacting with environment and learning
from trials and feedback from the environment.

Despite these achievements, LLMs are closed system because they are pre-trained on a huge amount
of fixed data. They often encounter challenges when tasked with complex reasoning over external
knowledge that did not appear in the pre-training data. For example, when needing to answer
questions based on knowledge from enterprise internal documents or up-to-date information from the
Internet, LLMs may unfortunately only give hallucinated answers based on pre-training data it has
seen before. Therefore, it is highly desirable to extend the LLM reasoning capability to external data
source and knowledge.

Making closed-world LLMs open to external knowledge would require integrating reasoning abilities
with the ability to interact effectively with search engines that can utilize up-to-date external informa-
tion. Retrieval-augmented generation (RAG) Lewis et al. (2021) Gao et al. (2024) is one of the most
popular approaches for integrating LLMs with search engines, either treating the search engine as a
tool Schick et al. (2023) or utilizing a separate retrieval model to first retrieve passages from external
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Figure 4 | Demonstration of PPO and our GRPO. GRPO foregoes the value model, instead
estimating the baseline from group scores, significantly reducing training resources.

on the rewards {𝑟≥𝑡} and a learned value function 𝑉𝜓. Thus, in PPO, a value function needs to
be trained alongside the policy model and to mitigate over-optimization of the reward model,
the standard approach is to add a per-token KL penalty from a reference model in the reward at
each token (Ouyang et al., 2022), i.e.,

𝑟𝑡 = 𝑟𝜑 (𝑞, 𝑜≤𝑡) − 𝛽 log
𝜋𝜃(𝑜𝑡 |𝑞, 𝑜<𝑡)
𝜋𝑟𝑒 𝑓 (𝑜𝑡 |𝑞, 𝑜<𝑡) , (2)

where 𝑟𝜑 is the reward model, 𝜋𝑟𝑒 𝑓 is the reference model, which is usually the initial SFT model,
and 𝛽 is the coefficient of the KL penalty.

As the value function employed in PPO is typically another model of comparable size as
the policy model, it brings a substantial memory and computational burden. Additionally,
during RL training, the value function is treated as a baseline in the calculation of the advantage
for variance reduction. While in the LLM context, usually only the last token is assigned a
reward score by the reward model, which may complicate the training of a value function that is
accurate at each token. To address this, as shown in Figure 4, we propose Group Relative Policy
Optimization (GRPO), which obviates the need for additional value function approximation as
in PPO, and instead uses the average reward of multiple sampled outputs, produced in response
to the same question, as the baseline. More specifically, for each question 𝑞, GRPO samples a
group of outputs {𝑜1, 𝑜2, · · · , 𝑜𝐺} from the old policy 𝜋𝜃𝑜𝑙𝑑 and then optimizes the policy model
by maximizing the following objective:

J𝐺𝑅𝑃𝑂 (𝜃) = E[𝑞 ∼ 𝑃(𝑄), {𝑜𝑖}𝐺𝑖=1 ∼ 𝜋𝜃𝑜𝑙𝑑 (𝑂|𝑞)]

1
𝐺

𝐺∑︁
𝑖=1

1
|𝑜𝑖 |

|𝑜𝑖 |∑︁
𝑡=1

{
min

[
𝜋𝜃 (𝑜𝑖,𝑡 |𝑞, 𝑜𝑖,<𝑡)
𝜋𝜃𝑜𝑙𝑑 (𝑜𝑖,𝑡 |𝑞, 𝑜𝑖,<𝑡)

𝐴̂𝑖,𝑡 , clip
(
𝜋𝜃 (𝑜𝑖,𝑡 |𝑞, 𝑜𝑖,<𝑡)
𝜋𝜃𝑜𝑙𝑑 (𝑜𝑖,𝑡 |𝑞, 𝑜𝑖,<𝑡)

, 1 − 𝜀, 1 + 𝜀
)
𝐴̂𝑖,𝑡

]
− 𝛽D𝐾𝐿

[
𝜋𝜃 | |𝜋𝑟𝑒 𝑓

]}
,

(3)

where 𝜀 and 𝛽 are hyper-parameters, and 𝐴̂𝑖,𝑡 is the advantage calculated based on relative
rewards of the outputs inside each group only, which will be detailed in the following subsec-
tions. The group relative way that GRPO leverages to calculate the advantages, aligns well with
the comparative nature of rewards models, as reward models are typically trained on datasets
of comparisons between outputs on the same question. Also note that, instead of adding KL
penalty in the reward, GRPO regularizes by directly adding the KL divergence between the
trained policy and the reference policy to the loss, avoiding complicating the calculation of 𝐴̂𝑖,𝑡.
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Figure 1: PPO Schulman et al. (2017) and GRPO Shao et al. (2024) Algorithms

documents based on the LLM input as query and then incorporate the retrieved passage as part of the
context for LLM generation Lewis et al. (2021). This allows the LLM to leverage external knowledge
to correctly answer questions instead of giving hallucinated answers only based on pre-trained data.

Different approaches to integrate search engine as part of the LLM reasoning process have been
explored, including simply putting retrieved passages into prompts or actually training LLMs to use
search engine as a tool during reasoning Schick et al. (2023) Qu et al. (2025). But these methods are
difficult to generalize and scale effectively due to their reliance on task specific prompts, high-quality
annotated data, as well as the inherent non-differentiability of the search operation. Recently Search-
R1 Jin et al. (2025b) has proposed a novel way to applying RL to the search-and-reasoning scenarios
that require LLMs to utilize knowledge from external sources. They demonstrate that even using a
straightforward outcome-based reward function is effective in making closed-world models open to
external knowledge reasoning.

In this paper we explored ways to improve the reasoning capabilities on external knowledge over
Search-R1 method Jin et al. (2025b) by designing a novel RLAIF (RL through AI Feedback)
framework that can work with search engine and also novel reward functions for the new framework.

2 Related Work

2.1 Reinforcement Learning Algorithms

Reinforcement Learning Kaelbling et al. (1996) Sutton et al. (1999) is a type of machine leaning
mechanism that learns by doing (trial and error) and interacting with the environment, getting
feedback from the environment through a format of reward for doing it right. Over the time, it learns
a behavioral policy that can achieve high reward for long term success. Different policy update
algorithms have been developed based on experience and feedback, most popular one being Policy
Gradient method Sutton et al. (1999). Proximal Policy Optimization (PPO)Schulman et al. (2017)
and Generalized Proximal Policy Optimization (GRPO) Shao et al. (2024), as shown in Figure 1, are
two advanced methods in this category.

Proximal Policy Optimization (PPO) Schulman et al. (2017) is a widely used reinforcement learning
algorithm. As a policy gradient method, it uses gradient to guide how to update the policy to increase
the expected reward. The risk of changing the policy too much in any single step is that the model
may forget what it has learned from previous steps and thus cause the model to be unstable. In order
to prevent this from happening, PPO uses a clipping mechanism, where it compares the new policy to
the old one and only allows conservative updates that don’t change policy too drastically, typically
keeping the probability ratio between new and old policies in a small range [1− ϵ, 1+ ϵ]. This balance
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between performance and convergence stability makes PPO popular in modern RL applications.

JPPO(θ) = E x∼D
y∼πold(·|x;R)

 1∑|y|
t=1 I(yt)

|y|∑
t=1

min

(
πθ(oi,t)

πold(oi,t)
At, clip

( πθ(oi,t)

πold(oi,t)
, 1− ϵ, 1 + ϵ

)
At

) .

While PPO mechanism needs to train a value function to estimate how good an action is in an absolute
sense, Generalized Proximal Policy Optimization (GRPO) Shao et al. (2024) removes the need of
such value function. Instead, it learns from relative comparisons of actions taken in the same context.
More specifically, for each input, the model generates a group of outputs (e.g., multiple different
completions or actions), these outputs are then ranked or scored, either by humans or another AI
system. The reward is assigned relatively based on how well each output compares to others in the
same group. The best-performing outputs get higher rewards; weaker ones get lower rewards. These
relative rewards are then normalized within the group to guide policy update. These normalized
rewards can naturally avoid big update of the policy in one step and maintain convergence stability.
This group-based learning mechanism makes GRPO a powerful and efficient way to improve decision
making success, especially in tasks like language generation or reasoning.

JGRPO(θ) = E q∼P (Q), {oi}G
i=1∼πθold

(O|q)[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min
( πθ(oi,t)

πθold(oi,t)
Âi,t, clip

( πθ(oi,t)

πθold(oi,t)
, 1− ϵ, 1 + ϵ

)
Âi,t

)
− βKL

[
πθ

∥∥πθref

]}]

2.2 LLM and Reinforcement Learning

Large Language Models (LLM) and Reinforcement Learning (RL) intersect in powerful ways,
especially post-training to control model behavior. More specifically, after LLMs are pre-trained
through vast amount of corpora, Reinforcement Learning from Human Feedback (RLHF)Ouyang
et al. (2022) is often used to align the model’s outputs with human preferences or desired objectives.
In RLHF, a reward model is trained based on human ratings of model outputs, and this reward model
then guides the update of the LLM behavior policy through reinforcement learning algorithms (often
via PPO or GRPO). This process helps improve the behavior of LLMs to adhere to the human standard
and maintain its helpfulness, safety, and ethics. Reinforcement Learning algorithms can also improve
LLMs’ logic reasoning and problem solving skills for complex problems. In fact, Deepseek-R1 Guo
and et al. (2025) uses the GRPO algorithm to drastically improve the LLM reasoning capabilities.

Search-R1 Jin et al. (2025b) expands the reasoning capability of DeepSeek-R1 Guo and et al. (2025)
to the search and reasoning scenarios that require LLMs to retrieve external documents through RAG
Lewis et al. (2021)Gao et al. (2024). It models the search engine as part of the environment and
makes it compatible with existing RL algorithms, including PPO and GRPO. We can refer to the
upper part of Figure 2 without the orange components. Search-R1 adopts a straightforward outcome
exact matching based reward function, avoiding the complexity of process-based rewards. They
demonstrate that even using such straightforward reward function is effective in search-and-reasoning
scenarios to make closed-world models open to external knowledge based reasoning.

Reinforcement Learning with AI Feedback (RLAIF)Lee et al. (2024) is an emerging approach that
builds on the principles of Reinforcement Learning from Human Feedback (RLHF), but instead of
relying on human-labeled preferences to train the reward model, it uses another AI model to provide
feedback. This approach significantly reduces human cost and overcomes the scalability limitations
of RLHF by automating the output evaluation process. In RLAIF Lee et al. (2024), an auxiliary AI
model, often another LLM, is used to evaluate and rank the outputs generated by the primary LLM,
and these rankings are used to train a reward model. The primary LLM is then fine-tuned on its
behavior policy via reinforcement learning algorithms such as PPO and GRPO using this reward
signal. RLAIF Lee et al. (2024) has recently been shown to be a promising step toward more scalable
and automated alignment methods for large language models.

While previous RLAIF Lee et al. (2024) does not work with search engine, in this paper we have
designed a novel RLAIF framework on top of the original Search-R1 Jin et al. (2025b) pipeline
to work with search engine and also introduced a new reward function for our framework. Our
experimental results demonstrate that we achieve better performance than the Search-R1 method.
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Example of search queries & their relevance score (RelScore):

Question: Who is older, Jed Hoyer or John William Henry II?
• Search Query 1: who is John William Henry II? --- RelScore = 0.8
• Search Query 2: Jed Hoyer birth year?  --- RelScore = 1.0
Answer: John William Henry II
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Figure 2: Our RLAIF Method that improves Search-R1 (our new components in orange)

3 Our Method

We designed a new RLAIF (Reinforcement Learning with AI Feedback) method to improve the
recent work Search-R1 Jin et al. (2025b), which integrated reinforcement learning with search engine
interactions. While Search-R1 teaches the LLM model when to search and search which content.
When the model predicted answer is wrong, it could be two reasons: the wrong search query being
used for search or the mistakes from search engines with the correct search query. However, the
exact matching reward model in Search-R1 fails to distinguish these two potential reasons, thereby
oftentimes leads to suboptimal model.

The key idea of our RLAIF method is to reward both final answer and search query. As shown
in Figure 2, we introduce an LLM-as-a-judger module to measure the relevance score between
original question and the search query. Then, we leverage this relevance score to adjust the LLM
generation process and design a new reward model.

3.1 Search-Question Relevance Score (RelScore)

Our new search-question relevance score measures the relevance between the original question and
the search query from rollout module in model thinking process. That said, when model generates
<search>search query</search> that invokes a search engine, we use off-the-shelf LLM model as
LLM-as-a-judger to evaluate its relevance to the question, with the following prompt:

You are a relevance evaluator. Given:
Question: {question}
Search Query: {search query}

Assess how well the search query addresses the question. Output a single decimal number between
0 and 1, where:

1.0 = perfectly relevant
0.0 = not relevant at all

Do NOT output any additional text or explanation. Provide the answer inside <score> and </score>.

RelScore is between 0 and 1. The higher RelScore the more relevant between the original question
and the search query.

3.2 Generation based on RelScore

Figure 3 shows how RelScore is used in LLM generation process during training. Compared to
Search-R1, we consider only calling search engine when the search query is relevant to the question.
That is, RelScore({question}, {search Query}) is larger than or equal to some threshold τ , referred to
as search threshold. Otherwise, we will just ignore the search query from rollout module.
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Figure 3: Generation based on RelScore

3.3 Reward Modeling

We design a new reward model R based on the search-question relevance and the exact matching. The
key idea is to provide more signals about the correctness of the thinking process when the predicted
answer does not match the ground truth.

R = max
(
EM, α · RelScore

)
where EM ∈ {0, 1} indicates exact answer match and α is a scaling factor that balances these two
reward functions.

The reward model R can be understood more simply as follows:

R =

{
1, If the ground truth and predicted answers exactly match;
α ∗ RelScore, Otherwise

4 Experimental Setup

We follow the experiment setting in Search-R1 code base Jin et al. (2025a). We train and evaluate
our RLAIF method on Qwen-2.5-3B Base LLM model. A retriever server is set up locally with E5
as the retriever and wikipedia as the corpus. The number of retrieved passages is set to 3. GRPO
reinforcement learning algorithm is used for both reproducing Search-R1 method and our new method.
The model training metrics are logged in Weight & Bias. We use the same hyperparameters as in
the Search-R1 code base. In addition, we select the scaling factor in reward model α = 0.1 and the
search threshold τ = 0.8. All experiments are run on 2 A100 80GB GPUs. We select the checkpoints
with highest EM-reward during training for evaluation.

For LLM-as-a-judger, we use the off-the-shelf GPT-4o-mini model by calling OpenAI APIs. However,
the native OpenAI LLM generation APIs do not support batch processing. We implemented the LLM
generation batch processing using Python’s asyncio and aiohttp libraries to send multiple OpenAI
API requests concurrently. It takes a list of prompts, constructs an asynchronous POST request for
each prompt, and gathers all responses in parallel using asyncio.gather. Inside the function, a nested
fetch handles the API call and extracts the model’s response. This approach significantly improves
throughput compared to sequential calls for LLM-as-a-judger and largely accelerates the RLAIF
training speed.

We conduct our experiments on two QA datasets: Natural Questions (NQ) dataset Kwiatkowski et al.
(2019) and HotpotQA dataset Yang et al. (2018).

• NQ is a general question answering benchmark dataset, which consists of real user questions
from Google Search and their corresponding Wikipedia pages with manually annotated
answers. We train on 79.2k samples and test on its test split with 3.61k samples.
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NQ HotpotQA

Direct Inference 0.106 0.149
CoT 0.023 0.021
IRCoT 0.111 0.164
Search-o1 0.238 0.221
RAG 0.348 0.255
SFT 0.249 0.186
R1 0.226 0.201
Search-R1 0.406 0.284

Our RLAIF Method 0.443 0.309
Table 1: EM accuracy of various methods with Qwen2.5-3B LLM on NQ and HotpotQA Datasets

• HotpotQA is a multi-hop reasoning question answering benchmark dataset that requires
to find and combine information from multiple supporting documents to answer questions.
HotpotQA includes diverse question types, such as bridge questions that link information
across paragraphs through shared entities, comparison questions that require comparing
attributes of different entities, and factoid questions. We train on 90.4k samples and test on
its dev split with 7.41k samples.

5 Results

5.1 QA Accuracy Quantitative Results

Table 1 shows the Exact Matching (EM) QA accuracy results of our RLAIF method and other
baselines. We use the same baselines as in Search-R1. As we can see, RLAIF delivers the strongest
performance of all methods on both benchmarks, achieving 44.3% on NQ dataset and 30.9% on
HotpotQA dataset. When comparing to the strongest Search-R1 method, RLAIF surpasses Search-
R1(40.6%) by nearly 3.7 points, representing a relative gain of over 9%. On HotpotQA, RLAIF
also outperforms Search-R1 (28.4%) by 2.5%, projecting to a relative gain of 8.8%. The results
demonstrated the effectiveness of our designed RelScore, and its application to both generation and
rewarding model modules.

(a) NQ Dataset (b) HotpotQA Dataset

Figure 4: Answer Semantic Matching Accuracy (Blue: Our RLAIF Method, Red: Search R1)

Figure 4 shows Answer Semantic Matching Accuracy of our RLAIF and Search-R1 methods.
Specifically, for ground truth answer and model predicted answer, we uses a pretrained embedding
model (all-MiniLM-L6-v2) to convert each answer into a numeric vector and then computes the
cosine similarity score between these vectors. The similarity score is used as Answer Semantic
Correctness Requirement, and the higher requirement leads to lower answer semantic matching
accuracy.

The results in Figure 4 show that both our RLAIF model and Search-R1 exhibit a clear upward
trend in semantic accuracy as the correctness threshold is relaxed. Compared to Search-R1, RLAIF
consistently outperforms Search-R1 by around 4% on NQ dataset and around 1-2% on HotpotQA
dataset. For HotpotQA dataset, due to the complexity of multihop reasoning task, the smaller gain
performance gain of our RLAIF method is likely to be because of the small size LLM (Qwen2.5-3B).
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5.2 Qualitative Results

Table 2: Success Example in NQ Dataset
Question Where was the u.s.s maine when it exploded in 1898?
Answer Havana Harbor

<think> I need to find out where was the u.s.s maine when it exploded in 1898. I’ll search for it.
<search> where was the u.s.s maine when it exploded in 1898?
<information> Doc 1(Title: "USS Maine") whose sinking by an explosion on February 15, 1898 precipitated the Spanish–American

War. To the south and east is the Atlantic Ocean and to the north and northeast is New Brunswick, a province of
Canada...
Doc 2(Title: "Charles Dwight Sigsbee") Charles Dwight Sigsbee Charles Dwight Sigsbee (January 16, 1845 – July 13,
1923) was a Rear Admiral in the United States Navy...
Doc 3(Title: "USS Maine Mast Memorial") USS Maine Mast Memorial The USS ""Maine"" Mast Memorial is a
memorial honoring those who died aboard the on February 15, 1898, after a mysterious explosion destroyed the ship
while at anchor in Havana Harbor. It is located ...

<answer> Havana Harbor

Table 3: Failed Example in NQ Dataset
Question What is the poorest county in the state of florida?
Answer Union County

<think> I need to find out what is the poorest county in the state of florida. I’ll search for it.
<search> what is the poorest county in the state of florida?
<information> Doc 1(Title: Florida) capita income varies widely by geographic region and profession...

Doc 2(Title: Florida) "non-tipped" positions, which was higher than the federal rate of $7.25. Florida has 2 cities in
the top 25 cities in the U.S. with the highest average credit card debt, Miami and Tampa...
Doc 3(Title: "Okeechobee County, Florida") a family was $35,163. Males had a median income of $25,574 versus
$20,160 for females. The per capita income for the county was $14,553. About 11.80% of families and 16.00% of the
population were below the poverty line, including 19.90% of those under age 18 and 10.30% of those age 65 or over.
Okeechobee County is ...

<answer> Okeechobee County

Table 2 and Table 3 show the success and failed examples in NQ dataset. We observe that the model
usually only searches once and utilize the retrieved information to derive the answer to the question.
The failed example in Table 3 is due to the incorrect information obtained from the retriever.

Table 4: Success Example in HotpotQA Dataset
Question Who is older, Jed Hoyer or John William Henry II?
Answer John William Henry II

<think> I need to find out who is older, Jed Hoyer or John William Henry II. I’ll search for it.
<search> Who is older, Jed Hoyer or John William Henry II?
<information> Doc 1(Title: "John W. Henry") the firm’s management had fallen from $2.5 billion in 2006 to less than $100 million

as of late 2012. As of July 2017, ""Forbes"" estimated his net worth to be $2.6 billion. John William Henry II was
born on September 13, 1949 in Quincy, Illinois...
Doc 2(Title: "Jed Hoyer") career saves record with Sam Elias and Nick Miceli. During his time at Wesleyan University
he was also initiated into and is a brother of Delta Kappa Epsilon. He spent Summer 1995 ...

<answer> John William Henry II

Table 4 and Table 5 show the success and failed examples in HotpotQA dataset. In the success
example, although the question requires reasoning, the retrieved top 3 documents covered the both
persons’ information and the model is able to predict the correct answer based on these documents.
In the failed example, the model is misled by the incorrect retrieved information, then searches more
irrelevant information and finally provides a wrong answer.

5.3 Result Analysis

We further analyze the trends of different metrics in Search-R1 and our RLAIF method during model
training phase.

Figure 5 shows that our RLAIF method consistently drives both exact-match and relevance-score
rewards upward throughout training. On the left (EM Reward), the blue RLAIF curve begins near
0.1 and climbs steeply in the first 50 steps, then more gradually up to around 0.45–0.50 by step
150, where it stabilizes with only minor fluctuations even as the Search-R1 baseline (red) oscillates
sharply toward the end. On the right (Relevance Score Reward), our method starts around 0.84 and
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Table 5: Failed Example in HotpotQA Dataset
Question Where was the first governor after the The Missouri Compromise from?
Answer Bath, Maine

<think> I need to find out where was the first governor after the The Missouri Compromise from. I’ll search for it.
<search> Where was the first governor after the The Missouri Compromise from?
<information> Doc 1(Title: "John W. Henry") the firm’s management had fallen from $2.5 billion in 2006 to less than $100 million

as of late 2012. As of July 2017, ""Forbes"" estimated his net worth to be $2.6 billion. John William Henry II was
born on September 13, 1949 in Quincy, Illinois...

<think> I need to find out Kentucky. I’ll search for it.
<search> Search Kentucky
<information> Doc 1(Title: "Kentucky") ...
<answer> Kentucky

(a) EM Reward (b) Relevance Score Reward

Figure 5: Reward Trend during Training (Blue: Our RLAIF Method, Red: Search R1)

steadily improves, surpassing 0.90 by step 60 and plateauing above 0.97 by step 150, demonstrating
that RLAIF not only learns to produce more exact answers but also increasingly aligns the relevance
between search query and original question over the course of training.

(a) Policy Gradient Loss (b) KL Divergence Loss

Figure 6: Loss Trend during Training (Blue: Our RLAIF Method, Red: Search R1)

As we can see in Figure 6, during the training process, our RLAIF method’s policy gradient loss (left)
steadily decays from around 0.08 in the early steps down toward zero by step 100 and then fluctuates
tightly around zero for the remainder of training, indicating that the policy updates become small and
stable as the model converges. Meanwhile, the KL divergence loss (right) for RLAIF starts near zero
and grows gradually, reaching roughly 0.25 by step 150 and plateauing around 0.35–0.40 by step 250,
suggesting a moderate divergence from the reference policy that increases as the model refines its
behavior without blowing up. Both trends show that RLAIF achieves stable policy updates while
smoothly trading off against the KL penalty throughout training.

In terms of the success rate, we measure the number of valid search and QA finish ratio, in Figure 7.
Our RLAIF method (blue) rapidly increases the proportion of valid searches from about 0.50 at
step 0 to over 0.90 by step 40, then continues climbing to nearly 1.0 by step 80, where it remains
consistently high while the Search-R1 (red) collapses near the end. Similarly, the QA finish ratio
under RLAIF mirrors this pattern. These trends demonstrate that our RLAIF method quickly and
robustly optimizes both search validity and end-to-end QA completion.
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(a) Number of Valid Search (b) QA Finish Ratio

Figure 7: Success Rate during Training (Blue: Our RLAIF Method, Red: Search R1)

6 Discussion

We find that extremely small size LLM like Qwen2.5-0.5B consistently fall short of delivering strong
performance for both Search-R1 and our proposed RLAIF method. Despite their efficiency and
lower computational footprint, these smaller models struggle to perform high-quality retrieval and
reasoning, resulting in noticeably weaker accuracy and robustness.

Moreover, simply increasing the number of training epochs does not yield proportional improve-
ments. Beyond a certain threshold, further optimization leads to only marginal gains while incurring
substantial additional compute cost, or even worse the collapse of model training. This plateau effect
highlights that increasing model training steps alone is sufficient; instead, achieving optimal results
requires carefully designing new reinforcement learning training algorithm.

7 Conclusion

Our RLAIF method demonstrates that incorporating an LLM-as-a-judger evaluator into the reinforce-
ment learning loop not only enhances the model’s overall accuracy but also contributes significantly
to maintaining training stability. By leveraging the evaluator’s feedback during policy updates, we
are able to guide the model training toward more reliable reasoning and retrieval behaviors without
introducing instability or mode collapse. Looking ahead, we plan to investigate how this approach
scales when paired with larger language models. Moreover, we plan to extend our method beyond
question answering to a broader range of complex reasoning tasks.

8 Team Contributions

This is an individual project. All aspects of the project - including literature review, algorithm
development, implementation, and evaluation - were conducted by Claire Tang.

Changes from Proposal There is no change of research objective. After the careful study of the
existing work after proposal, we specified our fine-grained project scope from two aspects:

• In practice, there are two types of external knowledge: (1) general search engine, (2) retrieval
from a predefined set of documents. In this project, we focus on the second type of external
knowledge, following the existing Search-R1 paper Jin et al. (2025b).

• In terms of choosing LLM models, we use the same Qwen2.5-3B-Base model as Search-R1.
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